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SUMMARY

The objective of this research is to investigate experimentally, and support by finite

element calculations, the formation and propagation of Love waves from a P-wave source

due to scattering at material heterogeneities. We conducted a series of experiments where

surface strains were measured parallel and perpendicular to a planar granite scattering

surface. The granite wall cast in a surface layer waveguide of a low-impedance grout and

then cast on a granite base provided the interface for generating horizontally polarized (SH)
waves in the surface layer. The in-plane shear waves are the Love waves we measured at

the surface. The P-wave source was a 1-cm-diameter spherical explosive of PETN diluted
with microballoons to provide a charge density of 0.45 g/cm 3 cast in a styrofoam sphere to

further attenuate the peak pressure. We successfully measured the strains at three locations
parallel to the wall and two locations perpendicular to the wall, and the test repeatability
was good. Good agreement was also observed between the measured and calculated strain

at all locations. The code calculations also showed that in-plane shear strains form along

the surface layer/granite interface, and these shear strains propagate with little reduction in

amplitude but transform relatively high-frequency oscillations to low-frequency wave

packets.

In this report, we present the experimental configuration used to generate and

measure Love waves, an evaluation of the source used in the surface layer experiments,

and results from finite element code calculations of the experiment.
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SECTION 1

OBJECTIVE AND APPROACH

Detection of underground nuclear explosions includes the spectral analysis of

seismograms, an important portion of which is the contribution of Love waves. Field

evidence suggests that it may be possible to discriminate between nuclear events and

earthquakes by examining the Love wave records. The spectra for these events are

different because an earthquake generates shear waves directly, whereas an underground
explosion generates P-waves, from which Love waves are produced by scattering from

material heterogeneities. Our objective in this research was to produce experimental

evidence of the formation and propagation of Love waves in small-scale laboratory

experiments, and analyze the resulting records with finite element calculations of each

experiment. The approach is shown schematically in Figure 1. In these experiments, a
heterogeneous scattering surface in the form of a vertical planar wall is cast into the surface

layer, converting incident P-wave energy into shear waves. Shear waves are reflected at

the interface between the granite and the lower-impedance 2C4 grout interface, and the
horizontally polarized shear waves (SH-wave) generated at the wall and trapped in the

surface layer waveguide are the Love waves. In the experiments, we measured the

propagated surface strains of the undisturbed signal and signals modified by scattering.

We compared the measured and calculated strains to establish agreement and used to

calculations to examine the Love waves pr, duced by the vertical planar interface.

1.1 EVALUATION OF THE SOURCE

Initially, we investigated a spherical piezoelectric crystal as the P-wave source. The

results of our investigation, expanded in a separate reportI showed this source to be

inadequate for generating signals of high enough amplitude at the longer ranges of interest,

especially after scattering, to be easily resolved by measurements at the surface. The

piezoelectric crystal approach may still prove useful; however, a significant effort in

development of higher-output power supplies is required.

An alternative to the piezoelectric source was developed and is shown schematically

in Figure 2. This source is a modification to the spherical explosive charge used in

previous efforts.2 The source consists of a PETN explosive diluted by spherical plastic

beads (called microballoons) encased in an acrylic sphere. The density of the dilute

explosive is 0.45 g/cm 3, formulated by combining 97% by weight PETN and 3% by
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weight microballoons. The lower charge density reduces the Chapman-Jouguet (C-J)

pressure of the source from about 7.5 GPa for our typical 1.0 g/cm3 PETN density to

about 1.0 GPa for the dilute charge.3 We performed an experiment like that shown in

Figure 1 using a dilute explosive source coupled directly to the pourstone grout.

Unfortunately, this source was too energetic and caused significant surface spall in the

model. Consequently, we made a final modification to the source by encasing the dilute

charge in a 1.19-cm styrofoam sphere to further attenuate the peak pressure before

propagating into the surface layer material. The source was detonated by 2 grain/ft mild

detonating fuse running from the bottom of the specimen confined by a stainless steel tube.

Another consideration in the design of the source was efficient source installation

between experiments. The surface layer material is 2C4 grout; however, because this grout

has a substantial curing time, 90% strength at 28 days, we instead used pourstone to cast

the source into the surface layer model because it cures in about 2 hours. Between

experiments, we cored out the old source and cast in the new source with pourstone. The

properties of pourstone match closely with the properties of the 2C4 grout.

1.2 SOURCE EVALUATION EXPERIMENT

We conducted an experiment to characterize the source shown in Figure 2 and also

to generate a velocity history to be used as a boundary condition for finite element code

calculations of the surface wave experiments. A side view of the configuration for the

source evaluation experiment is shown in Figure 3(a), and the top view is shown in Figure

3(b). In this experiment, the dilute explosive charge source was cast in a 7-cm plug of

pourstone grout to mimic the source in the surface wave experiments and then cast in 2C4

grout. The resulting specimen was a cylinder 25.4-cm in diameter and 15 cm high. The

center of the source was located 5.08 cm below the top of the specimen to match the

surface wave experimental configuration. Copper loop particle velocity gages were cast in

the specimen at radial distances of 1.5, 2.0, 2.5, and 3.0 cm in the pourstone, and at 4.0,

5.0, and 6.5 cm from the center of the source in the 2C4 grout. Semiconductor strain

gages oriented in the principal directions were mounted to the top surface of the model at a

radial distance from the axis of 5.1 cm to measure the radial and circumferential strain

histories on the model surface.

To perform the experiment, the specimen is placed in a solenoid driven by a

constant current power supply providing about 270 amps to the coil, generating a constant

magnetic field of about 1800 gauss to the specimen. When the wave arrives at each gage

position, the copper loop gage moves at the local particle velocity, generating a voltage

4
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proportional to the length of the conductor, the magnetic field strength, and the particle

velocity. The experiment was performed at ambient pressure and room temperature.

The measured particle velocity histories from this experiment are shown in

Figure 4. The radial particle velocity histories inside the pourstone grout plug are shown in
Figure 4(a) at distances of 2.0, 2.5, and 3.0 cm from the center of the source, and the

radial particle velocity histories in the 2C4 grout are shown in Figure 4(b) at the 4.0-, 5.0-,

and 6.5-cm radii. Unfortunately, the oscilloscope overranged for the particle velocity gage

at the 1.5-cm range, so the peak was not captured and the result is not presented. In Figure

4(a), we observe an outward pulse of about 8 pgs followed by about an 8-pis negative

phase. Some structure is observed in the record from reflections at the pourstone/2C4

interface, shown as a reduction in velocity at the 2-cm location around 21 p~s, and at the

2.5-cm location in the positive phase at around 18 pts. The propagated pulse in the 2C4

grout [Figure 4(b)] is a smooth rise to the peak velocity and about a 7-pgs positive pulse

duration, followed by a 10-pis negative phase. The records are terminated when reflections

from the top surface were approximated to arrive at each gage position. Reflections from

the 2C4/pourstone interface were included in the finite element calculations, as all the

structure in the waveform at the closer ranges was included in the imposed velocity

boundary condition.

Displacements obtained by temporal integration of the velocity records are shown at

the 2.0-, 2.5-, and 3.0-cm locations in Figure 5(a) and at the 4.0-, 5.0-, and 6.5-cm

locations in Figure 5(b). Radial and circumferential strain histories measured at 5.1 cm

from a cylindrical symmetry axis are shown in Figure 6.

6
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SECTION 2

SURFACE WAVE EXPERIMENT AND CALCULATION

The configuration for the surface wave experiments is shown in detail in Figure 7.

In these experiments, a Sierra White granite block measuring 86.4 x 76.2 x 40.6 cm high

served as the base onto which a 10.2-cm layer of 2C4 grout was cast. The scattering

planar wall measured 38.1 x 76.2 x 10.2 cm and was bonded to the granite base using

concrescive epoxy. Semiconductor strain gages were mounted on the surface of the 2C4

grout at three ranges parallel to the granite wall scattering surface and two ranges

perpendicular to the wall. Parallel to the wall, 45-degree strain gage rosettes were located

at 5.1 cm (Station A), 10.2 cm (Station B), and 20.3 cm (Station C) from the projection of
the source onto the surface. In the direction perpendicular to the wall, strain gages forming

a 90-degree tee configuration were mounted in the principal directions at 5.1 cm (Station D)

and 20.3 cm (Station F). Station E refers to the 10.2-cm range perpendicular to the wall,

but no gages were located at this position. The source was identical to that described

previously. The strain gages were electronically calibrated prior to each experiment.

2.1 FINITE ELEMENT CALCULATIONS

Two finite element calculations were performed to analyze the formation of Love

waves from a spherical (point) source. The calculations were performed with the finite

element code DYNA3D. DYNA3D, developed at Lawrence Livermore National

Laboratory, 4 is an explicit nonlinear three-dimensional finite element code for analyzing the

dynamic response of solids and structures. The equations of motion are integrated in time

using the central difference method. Spatial discretization was achieved with eight-node

hexahedron (brick) elements. The material models used in our calculations are linear elastic

models, and the material properties used for the granite and 2C4 grout are listed in Table 1.

In the calculations, the 2C4 grout and pourstone assumed the same material properties.

The load is applied by a spherical velocity boundary condition applied at a 2-cm-diameter

location from the explosive source. The measured velocity time history shown in Figure 8
was used as the velocity condition in the calculations.

10
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Table I

MATERIAL PROPERTIES USED IN FINITE ELEMENT CALCULATION

Grante 2U

p 2.7 1.8 grWnscrn3

E 50.0 15.6 GPA

*0 0.22 0.28

The meshes used in the calculations are shown in Figure 9. The meshes shown

represent one half of the experimental configuration using a plane of symmetry passing
through the spherical source. Figure 9(a) shows the first calculation representing a layer of
grout over a granite half-space. Only one half of the mesh shown was actually used in the
calculation using the additional symmetry plane that exists in the figure. The mesh used in
this calculation contained a total of 12,771 elements. Figure 9(b) shows the second
calculation representing a layer of grout over a granite half-space adjacent to a granite wall.
The entire mesh shown was used in the calculation since no additional symmetry planes

exist. The mesh used in this second calculation contained a total of 25,542 elements.

To illustrate the effect of the wall on the formation of the Love waves, the surface
x-y shear strain fringes have been plotted at 50 and 75 PS in Figures 10 and 11,
respectively. Figures 10(a) and 1 (a) show the first calculation (without the wall) for
which the surface strains are dominated by a radially propagating P-wave. However,

because the three-dimensional postprocessor plots Cartesian (x-y shear) strain components
instead of a radial shear strain component, the regions of the figures near 45 degrees off of
the principle x- and y-axes have an x-y shear component resulting from the local coordinate

transformation from cylindrical to Cartesian reference frames. Along the principle x- and
y-axes the calculation has no surface shear strain components as expected resulting from

the radial symmetry of this problem.

For comparison, Figures 10(b) and 11 (b) show the second calculation (with the

wall) for which the surface strains along the x-axis are dominated by a radially propagating

P-wave and the surface strains along the y-axis (parallel to the wall) show the development

of the Love wave shearing strains. As described above, the shear strain components in the
regions of the figures near 45 degrees off of the principal x- and y-axes are a result of the
local coordinate transformation from cylindrical to Cartesian reference frames. Along the

principle x-axis the calculation has no surface shear strain component as expected resulting

13
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from the symmetry of this problem about the x-z plane. However, along the y-axis

adjacent to the wall the figure shows clearly the development of regions of significant shear
strain, which along this axis represent the development of the Love wave shearing
deformation. Figure 12 shows fringes of pressure for the case with the wall at 75 ps.

The effect of the wall on propagation perpendicular to the wall is shown in the

comparison of the two calculations at the 5.1- and 20.3-cm ranges (corresponding to

Stations D and F) in (a) and (b), respectively, in Figure 13. Although minor differences in

the x-x strain appear at the later times due to reflections off the wall, the effect is negligible

and shows that this experimental geometry is appropriate for investigating both the layer-

over-half-space and scattering surface cases.

2.2 COMPARISON OF EXPERIMENTS AND CALCULATION

In the calculation, time = 0 corresponds to the application of the velocity boundary

condition at the 2-cm range. Therefore, we shifted the calculated times 10.5 PS to

correspond with the actual time in the experiment. The results from the surface wave

experiments are shown superposed with the results from code calculations at each station

on the surface in Figures 14 through 18. The record for each gage position (identified by

Stations A-F) is shown as an average of three experiments. The data from the experiments

used in the averaging is shown in the Appendix and demonstrates excellent repeatability,

particularly at the farther ranges. One gage each at the 5.08-cm (SG9) and 20.3-cm (SG2)

locations along the direction of the wall failed prior to the experiments and no data was

recovered at these measurement positions. In all figures, compression is positive in our

sign convention.

Figure 14 shows the comparison of experiment and calculation at Station A, located

at the 5.1-cm range parallel to the scattering surface. The calculated results were

transformed to correspond to the strain measured by the strain gage. The data shows an

initial positive pulse from the direct P-wave, followed by a large amplitude negative phase

from the free-surface reflected tension. At later times, the calculation shows low-amplitude

oscillations around zero in the y-y strain direction, and a low-amplitude final tensile

condition in the direction rotated 45 degrees from the y-axis. Overall, the data obtained

from the strain gages captures the basic features of the waveform, although the

experimental data shows slightly larger amplitude strains than those calculated. Moving out

to the farther ranges at Station B (10.2 cm) and Station C (20.3 cm), shown in Figures 15

and 16, respectively, the calculated and measured strairs show very good agreement in the

17
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general character of the waveform, although the measured amplitude is a bit higher than

calculated. Nevertheless, most of the prominent features are observed.

The data is shown superposed on the calculated results at Stations D and E in
Figures 17 and 18, respectively. In the direction perpendicular to the wall, the gages were

oriented at 90 degrees corresponding to the principal strain directions. In Figure 17(a)

(Station D at 5.1 cm), the data and calculation show an initial compressional pulse in the

radial direction from the direct P-wave, followed by a large-amplitude tensile pulse. The
general feature at this location is a large-amplitude initial pulse followed by very low-

amplitude oscillations about zero in the radial direction, and a negative tensile strain in

circumferential direction [Figure 17(b)]. The observed time difference is a computational
artifact due to the position within the element where strain is calculated. At the 20-cm

location (Station F), the data and calculation show some late-time oscillations of similar

amplitude to the initial pulse and are most likely the result of surface waves propagating
within the waveguide layer. Overall, we are pleased with agreement between experiment

and theory, particularly because of the extremely low-amplitude signals measured and the

excellent repeatability shown in the Appendix. Because the code has been satisfactorily
validated by experiment, we can use the code results to analyze the propagation of Love

waves within the surface.

Figure 19 shows a comparison of the x-y shear strain (Love wave component) at

stations parallel and perpendicular to the wall. Stations A and D are shown superposed in
Figure 19(a), Stations B and E in Figure 19(b), and Stations C and F in Figure 19(c). The
horizontal shear deformation perpendicular to the wall is an artifact of the calculation

because the element was not centrally located along the symmetry plane. Nevertheless, we

can subtract one result from the other because this artifact is inherent in both directions.

The differences in x-y shear strain in the two directions on the surface are the Love

waves, and the propagation of the Love waves is shown in Figure 20(a) through (c). At

the 5.1-cm range, the x-y shear strain is observed to consist of fairly high-frequency (-100
kHz) oscillations, maintaining an amplitude of about 20 gE at the later times. As the Love

wave propagates to the further ranges, shown in Figure 20(a) and (b), the amplitude
remains at about 20 jie, but the period has increased and most high frequencies have

disappeared. An interesting feature is that the polarity switches from positive shear to
negative shear with propagation. These results show that a planar wall can contribute a

significant Love wave component to the signal despite the purely compressional source.
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SECTION 3

CONCLUSIONS

We have presented experimental results that show good agreement with finite
element calculations of this experimental geometry. At each location, test repeatability was
also good and the data were adequate to validate the code. The results from the code show

the formation of a Love wave component generated by the shear tractions at the interface of
the two materials, and show that this component is propagated with little dissipation to the

further ranges. The results show a blending of the high-frequency component of the Love
waves into lower-frequency packets with propagation. This result is not unexpected;
however, it is encouraging that this experimental technique can provide high-quality data

from a low-energy source to validate codes for investigating Love wave propagation in
more complex geometries.
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APPENDIX A

The results from three experiments are shown superposed at each gage position in

Figures A. I through A.5 to demonstrate repeatability between tests.
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